

BEUTH HOCHSCHULE FÜR TECHNIK BERLIN University of Applied Sciences

Quantitative Hochauflösende Analyse Tomographischer Messdaten

Prof. Dr. Astrid Haibel

Möglichkeiten und Grenzen der tomographischen Analytik

Was kann die Tomographie?

- 3D Informationen
- hohe räumliche Auflösung
- quantitative Aussagen (3D Bildanalyse)
- dimensionelles Messen

Welche Grenzen hat diese Messmethode?

- technisch aufwändig
- zeitintensiv, d. h. (noch) nicht zur schnellen Prozessüberwachung einsetzbar
- Große Datenmengen \rightarrow Spezialsoft- und hardware notwendig
- wenig mobiles Verfahren
- Methode allein liefert keine verlässliche Aussagen bezüglich der Strukturintegrität
- (z. B. Formschluss ≠ Kraftschluss, mechanische Spannungen)

Referenzmethode zur Kalibrierung anderer Pr üfverfahren (insbesondere Synchrotron-Tomographie)

Aktuelle Ansprüche an die Messmethode

- hohe räumliche, Dichte- und Zeitauflösung
- In-situ Messungen (heizen, kühlen, Druck, Zug, Korrosion...)
- Gleichzeitige Nutzung komplementärer Messverfahren (Diffraktion, Fluoreszenz,...)
- Implementierung neuer tomographischer Messverfahren (3D-XRD, DPC,...)
- Weiterentwicklung der Algorithmik zur quantitativen Analyse (z.B. Porengrößenverteilungen, Rissanalysen, dimensionelles Messen,...)

Multifilamentsupraleiter Nb₃Sn

Komponenten:

- Kupfer (als Abschirmung) —
- Tantal (als Diffusionsbarriere)—
- Niob (umgibt die Zinn Pools) –
- Tin Pools ———

Herstellungsprozess:

- Strangpressen der Multifilamentleiter in der duktilen Ausgangsphase
- Wicklung der Spulen
- Wärmebehandlung zur Bildung der Nb₃Sn-Phase aus Nb und Sn

BEUTH HOCHSCHULE

University of Applied Sciences

BERLIN

Charakteristische Parameter:

- Supraleitung bis zu T_c=18 K (NbTi: 9.3 K)
- Obere kritische Feldstärke B_{c2}= 25 T (NbTi: 11 T)

Prozessoptimierung durch Kombination von in-situ Tomographie und Diffraktion

In-situ Tomographie:

- quantitative Analyse der Porenbildung innerhalb der Sn-Pools (Type I)
- quantitative Analyse der Bildung von "Kirkendall voids" (Type II)

BEUTH HOCHSCHULE FÜR TECHNIK BERLIN University of Applied Sciences

ESRF, ID15

Porenbildung im Supraleiter

Prozessoptimierung durch Kombination Von in-situ Tomographie und Diffraktion

In-situ Diffraktometrie:

Quantitatives Erfassen der Entstehung von intermetalischen Zwischenphasen sowie der supraleitenden Phase

VDI-TUM-Expertenforum 2012, 17. April

Quantitative Tomographische Analytik - In-situ Untersuchung eines Sinterprozesses -

- Probengeometrie: 960 x 980 x 100 Voxel
- E = 60 keV, Δx =3.5 µm, t = 3.5 s
- Sintertiegel: Al₂O₃
- Werkstoff: Kupferkugeln (Ø 100-120 μm)

BEUTH HOCHSCHULE FÜR TECHNIK BERLIN

University of Applied Sciences

BESSY, BAMline

Boolsches Bild

BEUTH HOCHSCHULE FÜR TECHNIK BERLIN

University of Applied Sciences

Graustufenbild

BEUTH HOCHSCHULE FÜR TECHNIK BERLIN University of Applied Sciences

Euklidische Distanztransformation

Wasserscheidentransformation

Berechnung der Sinterhalsquerschnitte

BEUTH HOCHSCHULE FÜR TECHNIK BERLIN University of Applied Sciences

mmmmm

VDI-TUM-Expertenforum 2012, 17. April

Quantitative Tomographische Analytik - Tomographie an Keramikschäumen -

Entwicklung und Optimierung von BERLIN Biokeramiken als Trägerstruktur in der Zellforschung

Gesinterter keramischer Schaum

Ex vivo Stammzellenkultivierung

- Zur erfolgreichen ex vivo Stammzellenkultivierung benötigt man ein passendes Kultivierungsmedium.
- Keramische Schäume haben ähnliche Strukturen wie menschliches Knochengewebe.
- ⇒ Nutzung von proteinbasierten keramischen Schäumen als 3D Matrix zur Stammzellenkultivierung

Lichtmikroskopie von menschlichem Knochengewebe

Elektronenmikroskopie eines keramischen Schaums

FÜR TECHNIK BERLIN University of Applied Sciences

BEUTH HOCHSCHULE

Probenpräparation

BEUTH HOCHSCHULE FÜR TECHNIK

BERLIN

University of Applied Sciences

Für eine gute Versorgung der Stammzellen muss die Keramikschaum-Struktur großporig und gut durchdringbar sein.

Variation der Zusammensetzung der Schäume

 \Rightarrow Einsatz unterschiedlich modifizierter Proteine

Verschiedene Präparationswege

⇒ Fixieren des Schaums entweder durch Mikrowellen oder durch Trocknung

Mittels Synchrotron-Tomographie wurde der Einfluss der verschiedenen Präparationswege und Zusammensetzungen auf die Porengrößenverteilung im Schaum quantitativ analysiert.

BEUTH HOCHSCHULE FÜR TECHNIK BERLIN University of Applied Sciences

Öffnen Schließen **Erodieren** Dilatieren . Я Dilatieren **Erodieren**

MorphologischeTransformationen

zur Glättung und Rauschunterdrückung

Öffnen (Erodieren – Dilatieren) Schließen (Dilatieren - Erodieren)

Segmentieren der Poren:

- 1. Euklidische Distanztransformation
- 2. Wasserscheidentransformation

Ausgangszusammensetzung Mikrowellenfixierung

Protein variiert Dispersionsmittel zugesetzt <u>Mikrowellenfixierung</u>

Dispersionsmittel zugesetzt Mikrowellenfixierung

Protein variiert Dispersionsmittel zugesetzt Lufttrocknung in Trockenkammer

VDI-TUM-Expertenforum 2012, 17. April

huminuhum

BEUTH HOCHSCHULE FÜR TECHNIK BERLIN University of Applied Sciences

1.44 mm Kantenlänge

Zusammenfassung

- Umfassenden chemisch-physikalischen Prozessanalyse durch in-situ quantitative tomographische Porositätsanalyse in Kombination mit diffraktometrischen Messungen
- 2) Zeitaufgelöste in-situ Erfassung eines Sinterprozesses
- 3) Chemisch-physikalische Prozessanalyse mittels quantitativer tomographischer Porengrößenverteilungs- und Porenformanalyse

BEUTH HOCHSCHULE FÜR TECHNIK BERLIN University of Applied Sciences

Vielen Dank für Ihre Aufmerksamkeit!