

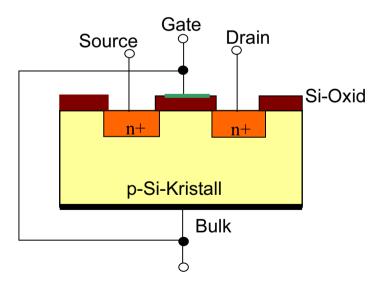
Neutroneninduzierte Störungen in MOS-Elektronik

Garching, den 13. April 2010

B. Gudehus¹, J. Zabel², K. Krüger², K. Simon¹

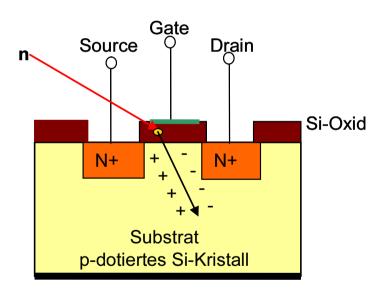
¹WIS – ABC-Schutz, Munster, ² HSU / Uni der Bw, Hamburg

Gliederung des Vortrags


- Hintergrund dieser Untersuchungen
- Single Event Effects in MOS-FETs
- SEU-Tests von SRAM-Bausteinen
- Ergebnisse der Untersuchungen

MOS-Technologie

- Bestimmende Integrationstechnik für digitale Speicherbauelemente
- Kanal- oder Gatelänge bezeichnet die Technologie
- Dotierungsstoffe sind
 Bor (p) und Phosphor (n)
- Gatespannung steuert die Leitfähigkeit des Kanals



Entstehung von SEE

- Neutron wechselwirkt mit mit den Stoffen im Halbleiter
- Generierung von Teilchen, die ionisieren
- Veränderung der Kanal-Leitfähigkeit
- Stromfluss zwischen Drain und Source
- Umkippen des Speicherinhaltes

Arten von Single Event Effects

- SEU (Single Event Upset)
 Änderung von Speicherinhalten
- MBU (Multi Bit Upset)
 Änderung mehrerer Speicherinhalte
- SEL (Single Event Latch-Up)
 Zünden von parasitären
 Thyristorstrukturen im IC

In der Regel keine Zerstörung des Bauelementes

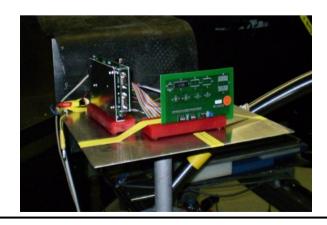
- SEB (Single Event Burn Out)
 Zerstörung des Bereichs zwischen Source und Drain
- SEGR (Single Event Gate Rupture)
 Zerstörung des Isolierung zwischen Gate und Substrat

Zerstörung des Bauelementes

Auswahl der Testobjekte

- Es wurden 12 SRAM marktübliche Bauelemente unterschiedlicher Hersteller, Gehäuseformen und Speichergrößen (1 .. 16 Mbit) untersucht.
- Ein Bauelement war als "strahlenhart deklariert (Pos. 12)
- Fin Bauelement war ein Ferroelektrischer Speicher (Pos. 8)

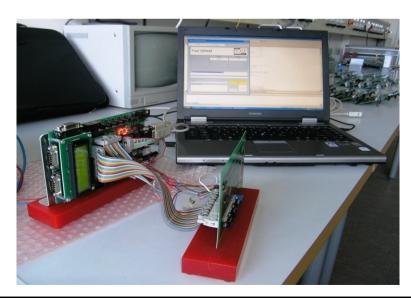
VDI Expertenforum April 2010 #6 **WIS GF 310 Bodo Gudehus**

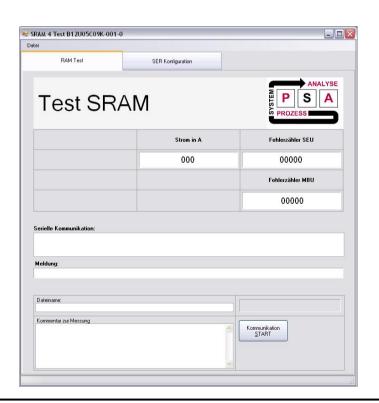


Versuchsaufbau

 Drei Versuchsreihen mit verschiedenen kinetischen Energien der Neutronen

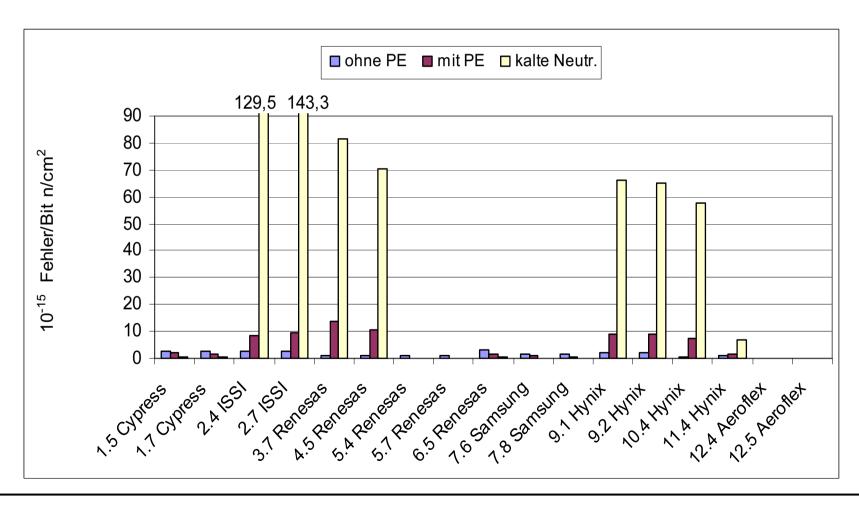
- Bestrahlung mit Spaltspektrum-Neutronen
- Bestrahlung mit erhöhten Anteil thermischer Neutronen (Testaufbau mit PE umgeben)
- Bestrahlung mit kalten Neutronen (SR 6)





Testsoftware

- Die Auswertung und Archivierung der Ergebnisse erfolgte mit einem Laptop
- Es konnten folgende Ereignisse registriert werden
 - Single Event Upsets (SEU)
 - Multi Bit Upsets (MBU)
 - Single Event Latch-Up (SEU)



Auswertung der SEU

Auswertung der SEU

Versuchsreihe ohne PE (schnelle Neutronen E ≈ 1,6 MeV)

Geringster Fehlerrate: 0 Fehler/10⁻¹⁵ Bit n/cm²

Höchste Fehlerrate: 3,1 Fehler/10⁻¹⁵ Bit n/cm²

Versuchsreihe mit PE (therm. Neutronen E < 100 meV)

Geringste Fehlerrate: 0 Fehler/10⁻¹⁵ Bit n/cm²

Höchste Fehlerrate: 13,7 Fehler/10⁻¹⁵ Bit n/cm²

Versuchsreihe mit kalten Neutronen (E < 2 meV)

Geringste Fehlerrate: 0 Fehler/10⁻¹⁵ Bit n/cm²

Höchste Fehlerrate: 143,3 Fehler/10⁻¹⁵ Bit n/cm²

Zusammenfassung der Testergebnisse

- Die Anzahl der SEU und MBU stieg in der Regel linear mit der Bestrahlungszeit (Fluenz)
- Lediglich in einem Fall war der Verlauf nicht linear
- Große Unterschiede in der Anzahl der SEU/MBU bei den verschiedenen Energiespektren der Neutronen
- Geringe Streuung bei gleichen Bauelementen über alle Tests
- Die Empfindlichkeit stieg bei einigen Bauelementen mit geringer werdender Energie der Neutronen. Bei anderen war das Verhalten genau umgekehrt
- Bei Tests mit Röntgenblitzen im Bereich von ca. 2 x10⁵ Gy(Si)/s bis ca. 3x10⁶ Gy(Si)/s wurden keine SEU / MBU beobachtet