

Eigenspannungs- und Texturanalyse am Instrument Stress-Spec

Neutronen zur Messung von inneren Spannungen

12. September 2006

Optimiertes Diffraktometer

- Neutronenfluß
- Probengeometrie
- Messvolumen
- Auflösung

Leute

. . .

G.A.Seidl (FRM-II) R. Schneider (HMI) U. Garbe (GKSS) J. Kornmeier (FRM-II, HMI) J. Repper (FRM-II) R Wimpory (HMI)

Neutronen zur Analyse der Eigenspannungen

Neue Möglichkeiten für Analysen im Inneren von Bauteilen, z.B.:

- Qualitätskontrolle bei Einzelstücken
- Prozessoptimierung
- *Eigenspannungen:* Verifizierung von FEM Berechnungen
- *Textur:* Berechnung von mechanischen Eigenschaften

Eigenspannungen ...

- sind mechanische Spannungen in einem Bauteil, das keinen äußeren Belastungen unterliegt
- entstehen bei der Werkstoffherstellung und der Fertigung von Bauteilen, z.B. beim Gießen, Umformen, Fügen
- entstehen in Verbundwerkstoffen, z.B. faserverstärkten Werkstoffen
- beeinflussen die Werkstoff- und Bauteileigenschaften z.B. Festigkeit, Lebensdauer, Verschleiß- und Korrosionsbeständigkeit

Beugungsmethoden ...

- sind **phasenspezifisch** (z.B. Verbundmaterialien wie Al/SiC)
- liefern zerstörungsfrei ortspezifische Spannungsinformation bis in das Volumen von industriellen Bauteilen
- erlauben die **quantitative** und **direkte** Ermittlung der Gitterdehnungen bzw. des Spannungstensors
- ermöglichen in-situ Messungen der Phasen-, Textur- und Eigenspannungsentwicklung in Abhängigkeit von Temperatur, externer Beanspruchung (Zug, Druck),

Beugungsmethoden ...

- sind **phasenspezifisch** (z.B. Verbundmaterialien wie Al/SiC)
- liefern zerstörungsfrei ortspezifische Spannungsinformation bis in das Volumen von industriellen Bauteilen
- erlauben die **quantitative** und **direkte** Ermittlung der Gitterdehnungen bzw. des Spannungstensors
- ermöglichen in-situ Messungen der Phasen-, Textur- und Eigenspannungsentwicklung in Abhängigkeit von Temperatur, externer Beanspruchung (Zug, Druck),

sind essentielle Werkzeuge der Eigenspannungsund Texturanalyse

Wie misst man Eigenspannungen mit Neutronen?

Wie misst man Eigenspannungen mit Neutronen?

- Probenvolumina min. 1 mm³
- Eindringtiefe bis **10 cm** (materialabhängig)

Netzwerk für Eigenspannungs- und Texturanalyse STRAINET

EUROPEAN COMMISSION DIRECTORATE GENERAL JRC JOINT RESEARCH CENTRE Institute for Energy

- Messvoulumen: 2x2x2 mm³
- Si(400) Monochromator, $\lambda = 1.548$ Å
- Messung an Fe(311) Braggreflex bei $2\theta_{\rm S} \sim 91^{\circ}$

Reparaturschweissung (Austenit)

- Validierung von FEM-Modellen
- Erstellung eines Protokolls zur Standardisierung von Eigenspannungen in ähnlichen Komponenten

EUROPEAN COMMISSION DIRECTORATE GENERAL JRC JOINT RESEARCH CENTRE Institute for Energy

- Messvoulumen: 2x2x2 mm³
- Si(400) Monochromator, $\lambda = 1.548$ Å
- Messung an Fe(311) Braggreflex bei $2\theta_{\rm S} \sim 91^{\circ}$

Reparaturschweissung (Austenit)

- Validierung von FEM-Modellen
- Erstellung eines Protokolls zur Standardisierung von Eigenspannungen in ähnlichen Komponenten

у

Reparaturschweissung (Austenit)

- Validierung von FEM-Modellen
- Erstellung eines Protokolls zur Standardisierung von Eigenspannungen in ähnlichen Komponenten

(M.Hofmann, R. Wimpory 2006)

Beispiel 3: Eigenspannungen in Superlegierungen

•3 bei 990°C geschmiedete Pancakes -Luft gekühlt (L) -Wasser abgeschreckt (W) -Wasser abgeschreckt und spannungsarm geglüht (R)

•Durchmesser ca. 240 mm

•Dicke ca. 40 mm

(abgedreht auf ca. 20 mm)

Vergleich mit numerischer Simulation

Eigenspannungen nach Abschreckvorgang

Eigenspannungen nach Abdrehen (umgelagert)

J.Repper et al (2006)

J.Repper et al (2006)

J.Repper et al (2006)

- beschreibt Orientierung der Kristallite in einem polykristallinen Material (95% der festen Materie ist polykristallin)
- entstehen bei der Werkstoffherstellung und der Fertigung von Bauteilen, z.B. beim Gießen, Umformen, Fügen
- beeinflusst die Werkstoff- und Bauteileigenschaften z.B. über Verformbarkeit …

Drehung um ϕ = 0-360° Kippung um χ = 0-90°

Polfigurmessraster

Lokale Textur über eine Schweißnaht in Aluminium

- Messauflösung: 2x2x2 mm³
- Abstand Messpunkte: 5 mm
- P2 = Mitte Schweißnaht

U. Garbe (2006)

- Messdauer:
 - Probenabhängig bis einige Stunden
 - ⊕ Vorbereitung & Adaption & Interpretation:
 - 3-10 Tage
- Maße und Gewichte:
 - \oplus bis 250kg
 - $\oplus extsf{0}$ bis 800mm

• Peripherie

Zugapparatur, Biegeapparatur, Öfen