

Defekt selektierende zfP-Methoden an Faserverbundbauteilen

Rodolfo M. Aoki

DLR Institut für Bauweisen und Konstruktionsforschung

Pfaffenwaldring 38-40, 70569 Stuttgart, Germany

VDI-Expertenforum: Moderne Schadensanalyse mit Neutronenstrahlen

VDI-Gesellschaft Werkstofftechnik und Forschungsneutronenquelle Heinz Maier-Leibnitz (FRMII)

München 10. April 2008

Übersicht

1. Einleitung

2. Defekte an Faserverbundbauteilen

Übersicht verschiedener Fehler bei CFK (Carbonfaserverstärkte Kunststoffe) und CMC (Keramik Matrix Composites) Angewandte zfP Methoden

3. Fertigungsfehler und Schädigungsentwicklung unter statischer und dynamischer Belastung an Faserverbundbauteilen Beispiele

4. Zusammenfassung

Hintergrund

STRUKTUR DER PROJEKTE INNERHALB DES SFB 381

Charakterisierung des Schädigungsverlaufes in Faserverbundwerkstoffen mittels zerstörungsfreier Prüfung

Relevanz von zfP für Faserverbundstrukturen

X- ray (Projection Refraction CT)	-		-	-	-	•
Laser-Scanning Microscopy/Photoelasticity		•		-	-	•
Strain Measurements (Photogrammetry, ESPI, Laser Extensometer)		•			-	•
Electromagnetic Methods (Microwaves, eddy current, Potential Sensor)					-	•
Thermography (Puls-Phase, light- or ultrasonic excited)	•	•			-	
Vibrometry (imaging, linear, non-linear, damage-selective)		•			-	
Sound waves (AE, Puls- Echo, Air coupled, Lamb- Waves, non-linear)					-	•
	Glasfiber/ Thermoplastic	CFRP GFRP	Wood	Steelfiber/ Concrete	C/C-SiC	Cellulose- Gipsum
	Materials					

NDI Methods for Different Fiber Reinforced Materials

Deutsches Zentrum für Luft- und Raumfahrt e.V. DFG Collaborative Research Project SFB 381 in der Helmholtz-Gemeinschaft

DLR

Principle and set-up of Optical Lockin Thermography (LT)

thermal diffusion length

 α thermal diffusivity

frequency

> modulated halogen lamps illuminate the sample

periodically response to this excitation observed with a thermographic camera

Fourier analysis of signal to get amplitude & phase picture

CEDIP JADE III LWIR Infrarot-Camera Focal Plane Array Detect. 320*240 LWIR MCT Spectral Sensitivity: 7.7-9.3µm Stirling cooling Therm. sensitivity.: 35mK

- Rapid, cost effective inspections,
- increased range of inspectable materials
- Larger inspected areas

Increase depth range 2x requires reduction f of 4

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

US & LT: Impact geschädigte CFK Platten

Thermographic processor

CT-Großanlage - v|tome|x L450

Große Anlage zur 3D-CT Analyse und Radiographie an Bauteilen und komplexen Strukturen aus:

- > Metall
- 😕 Keramik
- Faserverbundwerkstoffen
- hybriden Werkstoffen
- Kunststoffen

Röntgenröhren:	240 kV Mikrofokus bzw. 450 kV Minifokus	
Flächendetektor:	2048 x 2048 Pixel à 0.2 mm (16 Bil)	
Min. Voxelgröße:	ca. 5 µm (Mikrofokus)	
Max. erfassbarer Bauteilbereich:	B = 800 mm (horizontal); H = 1000 mm (vertikal)	
Max. Bauteilgröße:	ca. 1000 x 1700 mm (B x H)	
Max. Bauteilgewicht:	100 kg	
Hersteller:	Phoenix x-ray	

Hochauflösende CT-Anlage – Nanotom 180NF

CT-Anlage zur hochauflösenden 3D-CT Analyse von Feinstrukturen aus:

- Leichtmetall
- 😕 Keramik
- Faserverbundwerkstoffen
- hybriden Werkstoffen
- Kunststoffen
- elektronischen Bauelementen

Röntgenröhren:	180 kV high power nanofocus"		
Flächendetektor:	2300 x 2300 Pixel à 0.05 mm (12 Bit)		
Min. Voxelgröße:	< 1 µm		
Min. Brennfleckdurchmesser:	0.9 μm		
Max. Probendurchmesser:	ca. 100 mm		
Max. Probengewicht:	1 kg		
Hersteller:	Phoenix x-ray		

Ceramic Matrix Composites

US A-scan

X¹⁰

X-38

Photo

11 11

US C-scan

1100

Lockin Therm.

C/C

DLR Gas gun laboratory for HVI (High Velocity Impact)-Tests

Lab equipped with 3 gas guns and steel target chamber (3m x 2.5m x 2.5 m)

HVI-spectrum: From bird strike and tire fragments to hailstones and FOD (Foreign Object Damage) on aircraft and aeroengine structures **200 mm calibre, 12 m long:**

- Projectiles up to 2 kg mass and 250 m/s,
- Structure size, up to 2m

60 mm calibre, 5 m long:

- Projectiles to 0.2 kg mass and 250 m/s

32/25 mm calibre, 2.5 m long:

- Projectiles to 0.05 kg mass and 300 m/s

Evaluation of structural damage

- HS digital camera, dynamic load and strain measurements, US-C Scan, lockin thermography, X-ray with computer tomography CT

Set-up for impact test on fuselage shell

Eiskugel Impact

Photron Fastcamp APXRS2 28000fps 1/28000 sec X-ray

Sandwichstruktur: Faltwaben mit CFK Deckschichten

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Folie 12 Vortrag > Autor > Dokumentname > Datum

NDI: Geschädigte Faltwaben-Sandwichplatte

DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

CfK Stringerversteifte Paneele

vorne

Fotografie

Lockin Thermog.

hinten

Impact	Geschw.
3	69.1
5	75
6	99.9
7	100

US-Wasser Durchschallung

TREADER /

VARI (Vacuum Assist. Resin Infusion) Manufacturing Process NC- Laminates

Herstellung C/C-SiC Platten

Ultrasonic C-scans

US A-scan Signal an verschiedenen Stellen

Einstufige Klebeverbindung : Fatigue Test (R=0.1)

CFK

C/C-SiC

3.2

CfK

C/C-SiC

150>

/ersität Stuttgart

NDI Correlations: non homogeneous C/C-SiC

SASTAFI /

CFRP Non crimp laminate [0/45/90]_s **CAI(Compression After Impact) tests**

Impact Damaged CFRP Sandwich (Fold Core) CT- Views

Non crimp laminate: Compression fatigue loading strain distribution

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft MARCONFI 11

US C-scan u. CT Aufn. impactbeschädigter Paneele

CT Aufnahmen nach Bruch 6900 Zyklen

X-Y Ebene

2

3

5

Y-Z Ebene

Deutsches Zentrum Für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Folie 22 ortrag > Autor > Dokumentname > Datum

US-CfK Welle

US Impuls-Echo

US Impuls-Echo 2.25 MHz; 75 dB

X: Umfang der Welle

US Durchschallung 2.25 MHz; 31 dB

US Durchschallung

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Folie 24

CT-CfK Welle

Thermography of a fatigue loaded composite structure

Temperature image of a CFRP sandwich spar

Hot-Spot

Detection of

- Higher loaded areas
- Damaged areas
- Possible failure location

GFRP Tubes – Fatigue Shear Loading

Lockin Thermography

Opt. Strain measurements

 3D deformation measurement of an object surface

- Optical field method comb. w.
- Object grating
- Remote sensing

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Micromechanics of Failure: MMF

MMF: Fatigue Life Prediction

http://compositesdesign.stanford.edu

CARONET / /

Zusammenfassung

US, Thermografie, Röntgen und Computer Tomografie sind Defekt selektierende, notwendige zerstörungsfreie Verfahren zur Ermittlung von Schädigungszuständen an Faserverbundwerkstoffen in situ, beim Service, sowie bei Komponenten oder Strukturelementen.

Synergieeffekte werden durch Kombination verschiedener NDT Methoden erzielt. CT Untersuchungen ermöglichen 3-D detaillierte Strukturinformationen.

Zum besseren Verständnis von Schädigungsmechanismen bei Faserverbundstrukturen sind Simulationsmodelle, die die Anisotropie der Werkstoffe berücksichtigen, erforderlich.

>Neutronenstrahlbasierte Prüfverfahren werden die Einsatzbandbreite der zfP wesentlich erweitern.

Vielen Dank

für Ihre Aufmerksamkeit

