Using Neutron Scattering for the Optimization of IN706-type Superalloys

J. Rösler

Technische Universität Braunschweig

VDI-Expertenforum, München, September 2006

- Dipl.-Ing. Dominique DelGenovese (TUBS)
- Dr. Martin Götting (TUBS)
- Dr. Debashis Mukherji (TUBS)
- Dr. Pavel Strunz (NPI, Czech Republic)

- Dr. Ralph Gilles (FRM-II, TUM)
- Dr. Markus Hölzel (FRM-II, TUM)
- Dr. Albrecht Wiedenmann (BENSC)
- Dr. Daniel Toebbens (BENSC)

THE TEAM

Material groups:

- γ' -strengthened alloys (Waspaloy, Nimonic 263, Udimet 500 ...)
- solid solution and carbide strengthened alloys (IN 617, Haynes 230)
- γ'/γ'' -strengthened alloys (IN 706, IN 718, IN 625 ...)

Ni	Cr	Со	Мо	Nb	AI	ті	Fe	С
bal.	16.0	-	-	3.0	0.2	1.6	37.0	0.03

<u>200 n</u>m

CREEP CRACK GRWOTH DATA

865°C

820°C

In-situ measurement at elevated temperatures

NEUTRON SCATTERING (SANS)

865°C

820°C

In-situ measurement at elevated temperatures

In-situ measurement at elevated temperatures

1µm ⊨

500nm

Creep Crack Growth at T = 600°C

Heat treatment B

Heat treatment C

820°C / 10h ↔ 820°C / 2h

1000 -. 800 -

600 -

400 -200 -

0

00

02

Time (hours)

12

Temperature (°C)

In-situ measurement cycle at elevated temperatures


```
820°C / 10h ↔ 820°C / 2h
```


In-situ measurement cycle at elevated temperatures

Time (hours)

In-situ measurement cycle at elevated temperatures

3µm

• Concept:

Development of a γ'/γ'' -strengthened alloy similar to IN706 with improved microstructural stability

ALLOY DEVELOPMENT

750°C/750h

as heat-treated

DT 706

Ni-18Cr-22Fe-3Nb-1.9Ti-0.5AI

IN 706 Ni-16Cr-37Fe-3Nb-1.6Ti-0.2AI

	800 -	
		γ (111) (200)
	700 -	IN 706
	600 -	
ounts	500 -	
tron c	400 -	γ' (100) γ' (110)
neu	300 -	
	200 -	૾ૺૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ
	100 -	
	0-	
	2	.5 50 55 40 45 50 55 60 65 70 75 80
		20 [°]

	γ matrix	γ' / γ'' co-precipitates
lattice constants	a = 0.35886(1) nm	a = 0.36079(2) nm
weight fractions	≈ 95 %	≈ 5 %
lattice misfit	+ 0.54%	

	γ matrix	γ' / γ" co-precipitates	
lattice constants	a = 0.35853(1) nm	a = 0.35990(2) nm	
weight fractions	≈ 80 %	≈ 20 %	
lattice misfit	+ 0.38%		

- Neutron scattering and diffraction are powerful tools for alloy development and optimization as they allow for:
 - analysis of a representative material volume
 - time and temperature resolved analysis of phase transformations
- The mechanical behaviour of wrought superalloys such as IN706 crtically depends on careful control of the microstructre. Important factors for acceptable creep crack growth resistance are:
 - softening of the grain boundary regions
 - overaging of the precipitates

