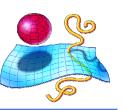
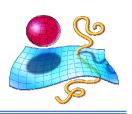


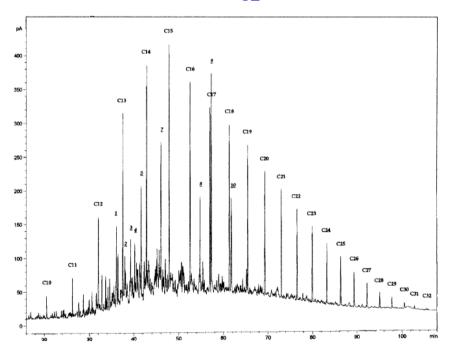
Research Center Jülich - Institute for Solid State Research

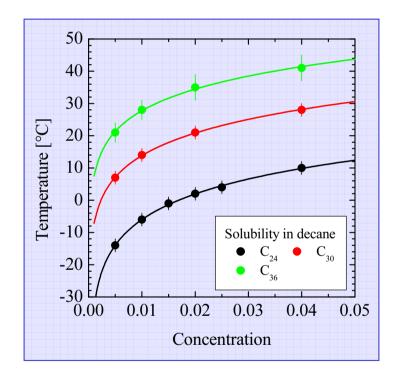

Structural Study of the Influence of Partially Crystalline Copolymers on Paraffin Crystallization in Dilute Solutions with Small Angle Neutron Scattering

A. Radulescu, D. Schwahn, L.J. Fetters*, and D. Richter

(*School of Chemical Engineering, Cornell University, Ithaca, New York)

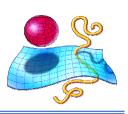

Paraffin Waxes - Properties


- → alkanes (paraffins) : straight chain molecules, single C C
 - bonds: C_nH_{2n+2} or simply C_n
- \rightarrow gaseous: $C_1 C_4$
- \rightarrow liquid: $C_5 C_{17}$
- \rightarrow solid: C_{18} ($T_m \cong 28.2^{\circ}C$) and n larger \rightarrow known as "waxes"
- → paraffin waxes: orthorhombic, hexagonal, monoclinic and triclinic structures

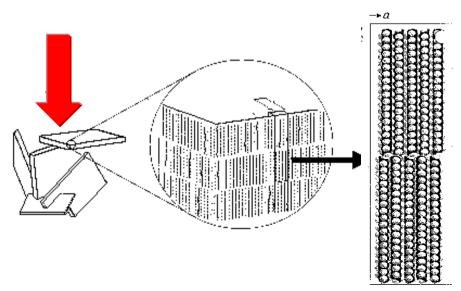

Composition of Diesel Fuel

Chromatography analysis of Diesel fuel (C_{12} and larger)

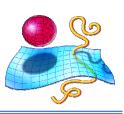
Wax solubility lines in decane $(C_{10}; T_m \cong -30^{\circ}C)$



Paraffins: - important component of middle - distillate fuels (10-35%)


- major components of crude oils

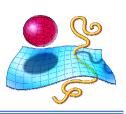
Crystallization of Paraffin Waxes



- Wax crystals form gels and stop flow
 - Gels inhibit crude oil recovery from deep sea reservoirs
- Wax crystals in Diesel oil plug filters

Cold Flow Properties of Middle-Distillate Fuels

 \rightarrow the cloud point (CP) - temperature when wax crystals appear (WAT)


 \rightarrow the pour point (**PP**) - temperature when fuel gels

→ the cold filter plugging point (CFPP) - temperature when a 45 mm filter is plugged in standard condition

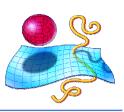
 \rightarrow typical diesel fuel without additives \rightarrow **PP** \cong 10°C

Polymeric Additives

→ Crystal growth of wax

- sensitive to impurities, e.g. modify size and shape of wax crystals
- when intentionally added \Rightarrow impurities become <u>additives</u>

→ Promoters

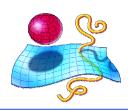

- crystallize prior to paraffins
- useful for the separation of waxes

→ Inhibitors

- wax dispersants/flow improvers (WDFI)
- crude oils and diesel fuels
 - remain fluid at low temperature and
 - pass through filters

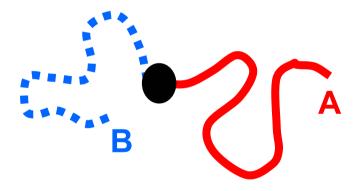
Polymeric Additives

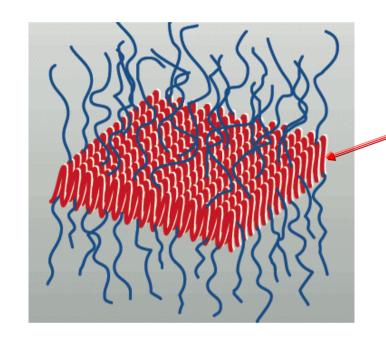
Choice largely by trial and error


- → polymers in general self assemble
- → interplay between polymer aggregate and wax crystallization important

Example: poly(ethylene-co-vinylacetate) - EVA

- → poorly characterized
- → not very efficient in certain oils
- \rightarrow 50% precipitation already at high T

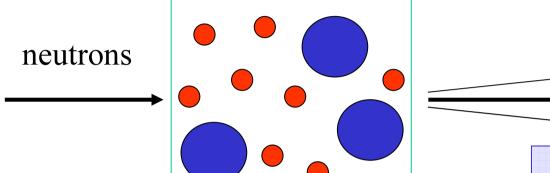



Polymeric Additives explored with SANS

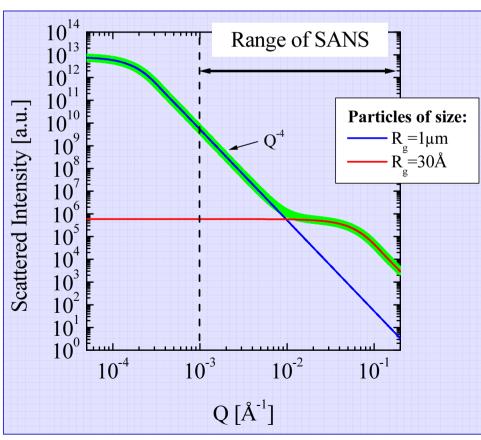
1. Diblock Copolymers

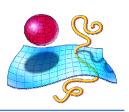
PE - PEP

Nucleation site


2. Random Copolymers

PEB-n type (ethylene/butylene copolymers)

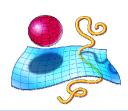

General Remarks on SANS experiments

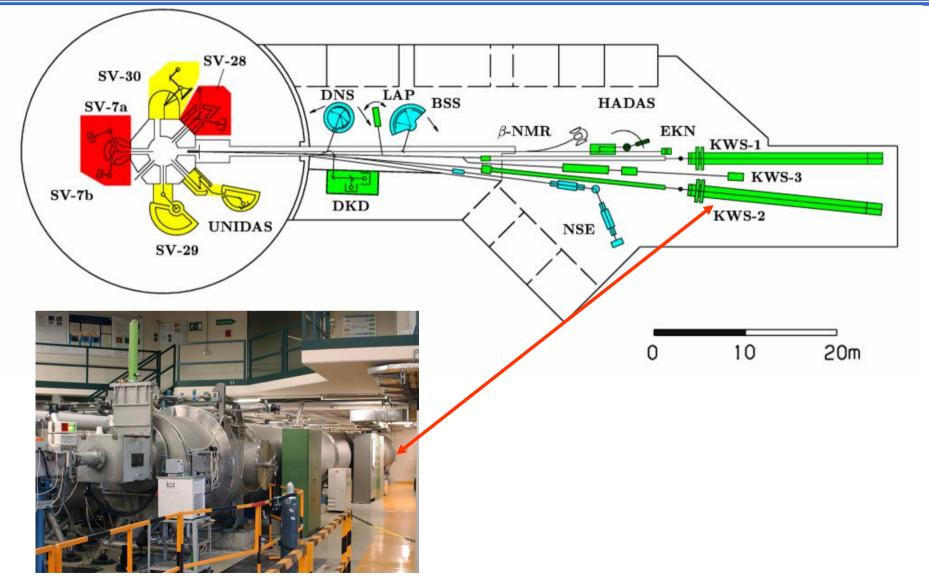

Wave number:

 $Q=(4\pi/\bullet)\sin(\Omega/2)$

Range SANS Instruments

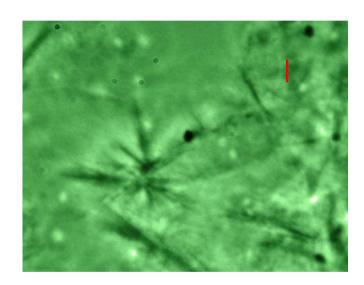
According to $D \ge -/2$ one can explore particles of size:


Light (● ≥ 6000 Å)	0.5 μm • D • 20 μm
Neutrons (● ≥ (2 – 15) Å)	10 Å • D • 20 μm

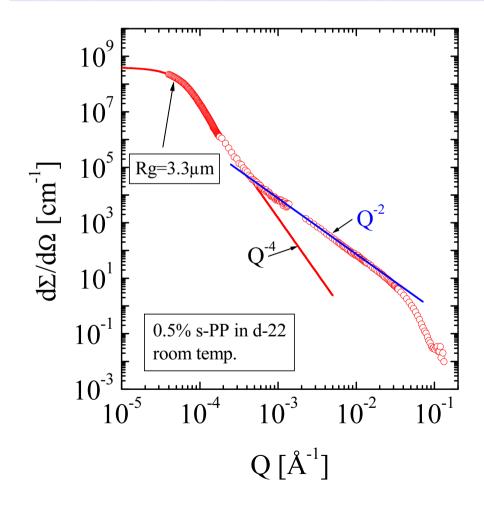

Three different SANS techniques allow to measure a particle size in a range of four orders of magnitude ($Q \ge 2\square/D$):

Pin - Hole SANS	$0.2\text{Å}^{-1} \ \ \square \ \ Q \ \ \square \ \ 10^{-3} \ \text{Å}^{-1}$
Focusing SANS	$5 \cdot 10^{-3} \text{ Å}^{-1} \ \text{m} \ \text{Q} \ \text{m} \ 10^{-4} \text{ Å}^{-1}$
Double Crystal Diffractometer	$10^{-3} \text{ Å}^{-1} \ \text{m} \ \text{Q} \ \text{m} \ 2 \cdot 10^{-5} \ \text{Å}^{-1}$

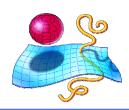

Instrumentation at FRJ-2 in Jülich



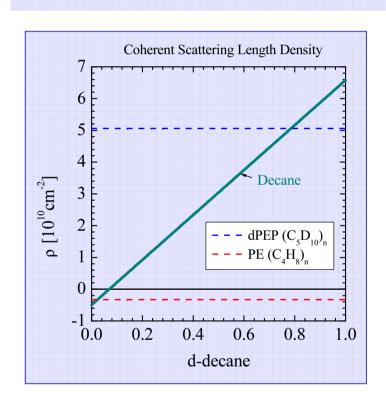
Crystallization of *syndio*-Polypropylene in d-22 solution - large scale view

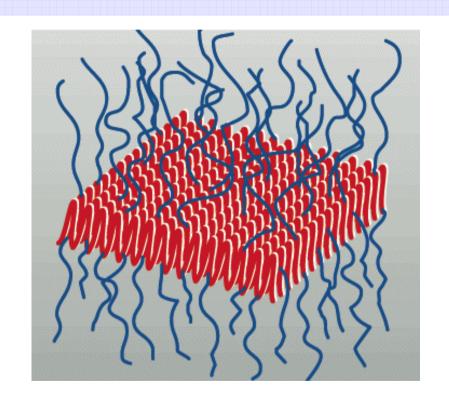


Spherulitic morphology


(Scale bar 2 µm)

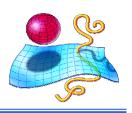
DKD, Focusing SANS, Pin - Hole SANS



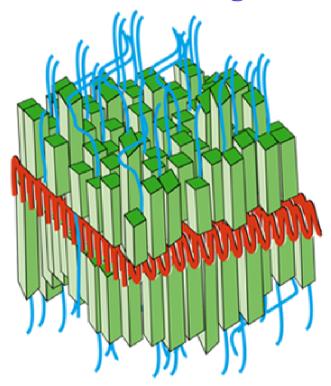


PE-PEP Diblock as Wax Crystal Modifiers

Contrast variation


Core Contrast =

Brush Contrast =



PE-PEP Diblock as Antifreeze for Diesel

polymer aggregates work as nucleation agents

suppression of large crystals

4 years from discovery to commercialization

Random Copolymers of the PEB-n Type

$$-(CH_{2} - CH = CH - CH_{2})_{x} - (CH_{2} - CH)_{(1-x)} -$$

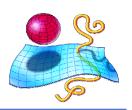
$$CH = CH_{2}$$

PEB-n precursor

$$-CH_{2} - CH_{2} - CH_{2} - CH_{2} \dots CH_{2} - CH_{2} - CH_{2} - CH_{2}$$

$$CH_{2}$$

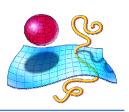
$$CH_{2}$$


$$CH_{3}$$

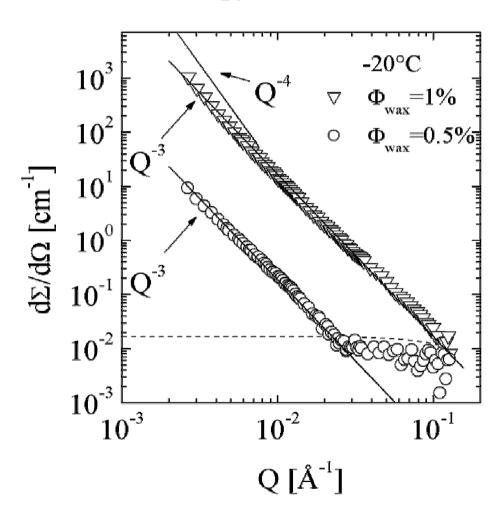
PEB-n
n: number of
ethyl branches/ 100
backbone carbons

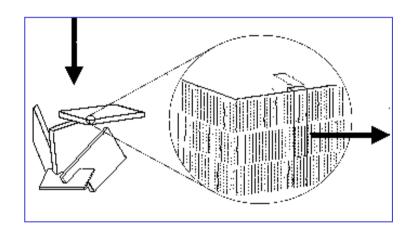
Model system for studying co-crystallization of paraffin and polymer additives in fuel oil at low temperatures

Scattering from Objects with characteristic Morphologies

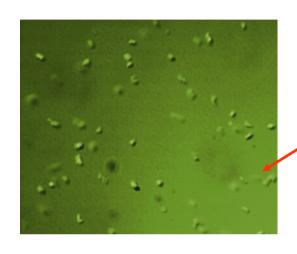


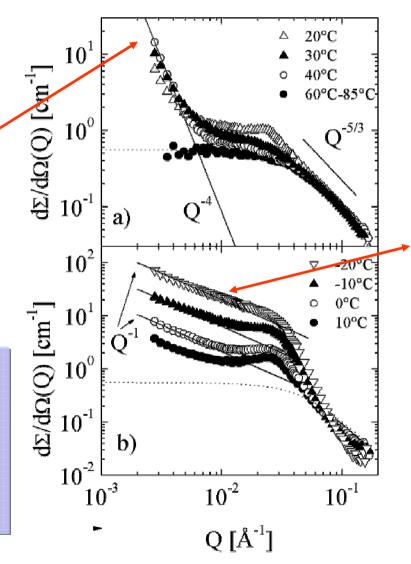
$$d\Sigma/d\Omega(Q) \propto Q^{-\alpha}$$


α	characteristic morphology	
3/5 (Flory exponent)	swollen chain in good solvent	
2	swollen chain in Θ-solvent	
1	rods	
2	plates	
4	3-D objects (R>1/Q)	
<3	mass fractals	
$3 < \alpha < 4$	surface fractals	
>4	diffuse interfaces	


Crystallization of pure Wax

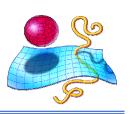
C₂₄ in decane


mass fractal: card house

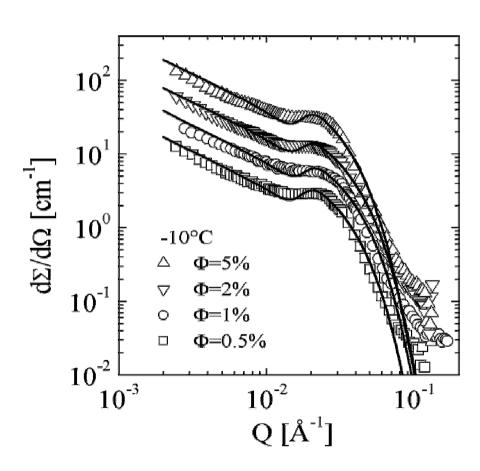


Aggregation Behavior of PEB-7.5 ($\mathfrak{P}_{pol}=1\%$)

Rod like structures at lower temperatures

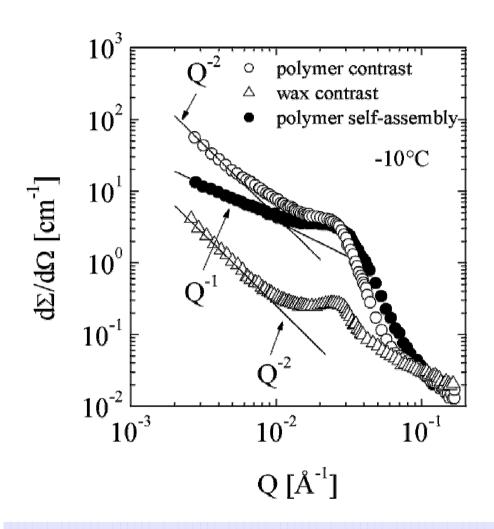

Correlation peak?

Large compact objects at by minority


From Porod constant and micrograph 0.7% polymer participation

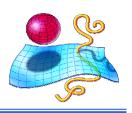
Aggregation Behavior of PEB-7.5

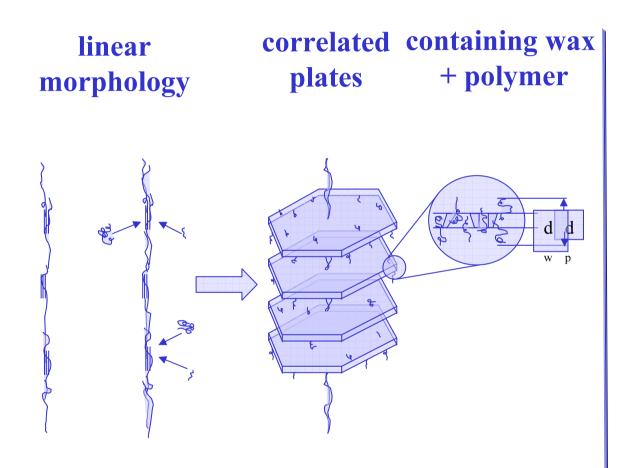
concentration dependence


Rod like structure

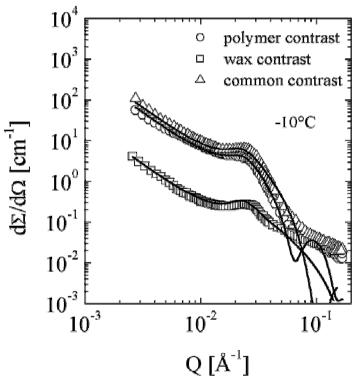
Density modulation along the rod of ~ 350 Å length; Polymer density within the rod: $4\% < \phi_{pol} < 30\%$

PEB-7.5 affects C₂₄ Crystallization

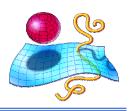


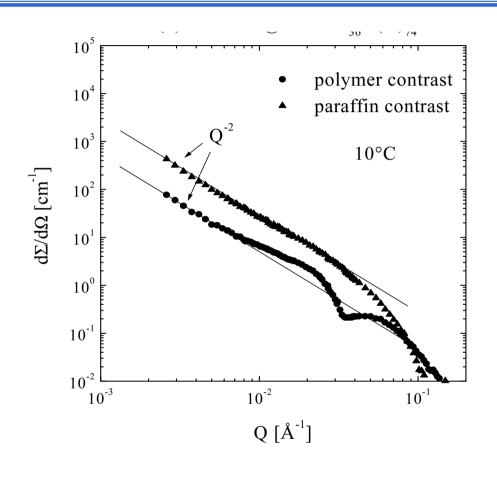

- → Aggregate morphology changes from 1D → 2D
- → Primordial modulation of the PEB 7.5 structure remains

PEB 7.5 self-assembles first



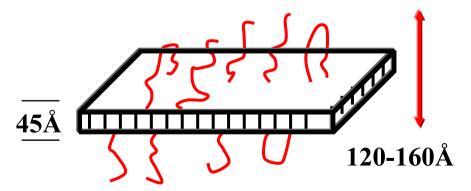
PEB-7.5 and C_{24} : Co-crystallization in correlated Plates





Shish-kebab morphology: similar to PE crystallization under flow

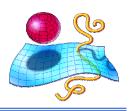
PEB-7.5 und C₃₆



wax plates

- \rightarrow thickness d_{wax} < 45Å
- \rightarrow single C_{36} plates

polymer plates

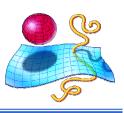

- → no correlation peak
- → brush like form factor

T=10°C below wax solubility line; wax co-crystallizes with polymer and suppresses the pure PEB-7.5 aggregation features

Wax Modification Efficiency

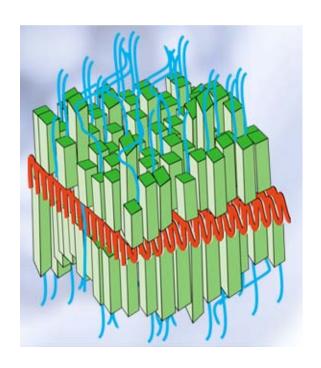
Results from evaluation of structures under different contrast

Example: wax and polymer content in platelets at 0°C, $\mathcal{P}_{w} = 2\%$, and $\mathcal{P}_{pol} = 0.6\%$


	wax	pol
C ₃₆	91%	9%
C ₂₄	36%	64%

PEB-7.5 optimized for C_{36} ; PEB-11 would be the optimized polymer for C_{24}

Take home message:


Efficiency highest if polymer and wax jointly crystallize

1. Crystalline – amorphous blockcopolymers

- polymers form templates

polymer templates nucleate wax crystals

PE-PEP is commercialized as

ParaflowTM

Diesel fuel additive

Wax crystal modification by partially crystalline polymers

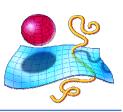
2. Random crystalline amorphous copolymers

A. Polymer aggregation commences at temperatures above wax solubility line

polymer form templates for crystallization

nucleation from the polymer structures

Limited efficiency


B. Wax solubility line in the order of polymer aggregation temperature

=> co-crystallization dominates wax

- plates at high T, suppression of 3-d objects
- polymer incorporated in wax plates

nucleation is mediated by the joint polymer wax structure

3. Pour point reduction

- most efficiency if polymer and wax crystallization coincide
- tuning is possible by changing PEB-n microstructure