Skip to content
  • Career
  • Phone book
  • Events
  • MLZ Webpage
  • MLZ User Office
  • Webmail (internal)
  • Webmail ("Betrieb")
  • Intranet
  • de
  • en
  • Research Neutron Source Heinz Maier-Leibnitz (FRM II)
  • Technical University of Munich
Technical University of Munich
  • Home
  • About us
    • From "Atomic Egg" to FRM II
    • Facts & Figures
      • Auftragsvergaben
    • News & Media
      • News article
      • Films
        • Interactive panorama
      • Brochures
        • Annual Reports
        • Newsletter
      • Events
        • Open day 2024
    • Contact
  • The Neutron Source
    • Neutrons
    • Fuel elements
      • Life cycle of a fuel element
      • Disposal of fuel elements
        • FRM II fuel element
        • Storage in Ahaus
        • Secure packaging
        • Transport vehicle
        • Permits
        • Function test
        • FAQ
      • Conversion
        • What does the conversion entail
        • Objectives of the conversion
        • Who is working on the conversion?
        • Fact check
    • Reactor
      • Installations in the pool
      • Guiding the beams
        • Cooling circuits
    • Irradiation facilities
      • Rabbit Irradiation
      • Capsule Irradiation
      • Mechanical Irradiation
      • Irradiation Position in the Control Rod
      • Irradiation with fast neutrons
      • Future Mo-99 irradiation facility
    • Safety
  • Safe all round
    • Protection of persons
    • Monitoring the facility
    • Monitoring the environment
      • Discharge of C-14
  • Research
  • Medicine
    • Radioisotopes for diagnostics
    • Radioisotopes for therapy
    • Tumor irradiation
  • Industry
    • Materialanalyse
      • TUM-Expertenforen
      • VDI Fachausschuss 101
        • Bildgebende Verfahren
        • Optische Messverfahren
        • Eigenspannungs- und Texturanalyse
        • Analytik
      • Analysis with neutrons
    • Radioisotopes for industry
    • Silicon doping
  • Career
  • Guided Tours
  1. Home
  2. About us
  3. News & Media
  4. News article

News

Exploring the origins of high-temperature superconductivity

Aktuell, Wissenschaft, PANDA | 17.10.2016

An international team of scientists has examined high-temperature superconductors at the instrument PANDA. Their resulsts have been published in Nature Communications.

Left: At MLZ researchers use the cold three-axis spectrometer PANDA of JCNS to study the magnetic excitations associated with unconventional superconductivity. Right: Hundreds of tiny samples of unconventional superconductors known as heavy fermions had to be aligned and glued onto aluminium plates for imaging in inelastic neutron scattering experiments. © Eckert/Heddergott, Technische Universität München, Yu Song/Rice University

Since the discovery of high temperature superconductivity, researchers have tried to find out why these materials already become superconducting at comparatively high temperatures. Neutron scattering experiments at PANDA of the outstation of the Jülich Centre for Neutron Science (JCNS) at the Heinz Maier-Leibnitz Zentrum as well as at the NIST Center for Neutron Research (NCNR) in Gaithersburg, Maryland, USA, suggest a need to rethink the role of magnetic fluctuations in the formation of this phenomenon. This kind of magnetic excitation occurs in all unconventional superconductors close to the transition temperature. Two models are being considered as possible causes; the outcome of the international team’s experiments are in good agreement with one of them. Source: A. Wenzik / JCNS

 

Original publication:

Yu Song, John Van Dyke, I. K. Lum, B. D. White, Sooyoung Jang, Duygu Yazici, L. Shu, A. Schneidewind, Petr Čermák, Y. Qiu, M. B. Maple, Dirk K. Morr & Pengcheng Dai
Robust upward dispersion of the neutron spin resonance in the heavy fermion superconductor Ce1−xYbxCoIn5.
Nat. Commun. 7:12774 doi: 10.1038/ncomms12774 (2016).

Article at Phys.org:
Neutron-scattering experiments explore origins of high-temp superconductivity, D. Ruth, 30.9.2016


◄ Back to: News article
To top
  • Privacy
  • Imprint
  • Accessibility