Skip to content
  • Career
  • Phone book
  • Events
  • MLZ Webpage
  • MLZ User Office
  • Webmail (internal)
  • Webmail ("Betrieb")
  • Intranet
  • de
  • en
  • Research Neutron Source Heinz Maier-Leibnitz (FRM II)
  • Technical University of Munich
Technical University of Munich
  • Home
  • About us
    • From "Atomic Egg" to FRM II
    • Facts & Figures
      • Auftragsvergaben
    • News & Media
      • News article
      • Films
        • Interactive panorama
      • Brochures
        • Annual Reports
        • Newsletter
      • Events
        • Open day 2024
    • Contact
  • The Neutron Source
    • Neutrons
    • Fuel elements
      • Life cycle of a fuel element
      • Disposal of fuel elements
        • FRM II fuel element
        • Storage in Ahaus
        • Secure packaging
        • Transport vehicle
        • Permits
        • Function test
        • FAQ
      • Conversion
        • What does the conversion entail
        • Objectives of the conversion
        • Who is working on the conversion?
        • Fact check
    • Reactor
      • Installations in the pool
      • Guiding the beams
        • Cooling circuits
    • Irradiation facilities
      • Rabbit Irradiation
      • Capsule Irradiation
      • Mechanical Irradiation
      • Irradiation Position in the Control Rod
      • Irradiation with fast neutrons
      • Future Mo-99 irradiation facility
    • Safety
  • Safe all round
    • Protection of persons
    • Monitoring the facility
    • Monitoring the environment
      • Discharge of C-14
  • Research
  • Medicine
    • Radioisotopes for diagnostics
    • Radioisotopes for therapy
    • Tumor irradiation
  • Industry
    • Materialanalyse
      • TUM-Expertenforen
      • VDI Fachausschuss 101
        • Bildgebende Verfahren
        • Optische Messverfahren
        • Eigenspannungs- und Texturanalyse
        • Analytik
      • Analysis with neutrons
    • Radioisotopes for industry
    • Silicon doping
  • Career
  • Guided Tours
  1. Home
  2. About us
  3. News & Media
  4. News article

News

The survey of copper selenate

Aktuell, Wissenschaft | 01.03.2016


Neutron scattering intensity distribution in energy-momentum space of copper selenate. (Grafics: D. S. Inosov, TU Dresden)

01.03.2016

Physicists from TU Dresden, the Max-Planck-Institutes in Dresden and Stuttgart, and the Leibniz-Institut für Festkörper- und Werkstoffforschung achieved full understanding of magnetic interactions in copper selenate for the first time. For that matter, they have performed a series of inelastic neutron scattering experiments on three different spectrometers at MLZ and Oak Ridge National Laboratory (USA). On the time-of-flight spectrometer at ORNL, the 4-dimensional spectra were taken, while the three-ax spectrometers PUMA and PANDA were used to determine the important details.

Skyrmions were discovered experimentally in metals by the group of Prof. Christian Pfleiderer in 2009. Since then several other compounds are observed to show magnetic vortex structures. They are of huge interest not only for basic research, but also due to their potential as future applications in alternative magnetic data storage. Cu2OSeO3 is the first insulating compound with a complex three-dimensional magnetic structure showing a skyrmion lattice.

The vortex magnetic structure was observed in copper selenates in 2012 already. Theorists were able to model the magnetic behavior soon. The combination of different neutron methods allowed measuring the complete spectrum of magnetic excitations. By this, the existence of a large energy gap between different parts of the spectrum was confirmed, and the spectrum could be determined quantitatively. The resulting knowledge of exact positions of the dispersions and of the energy gap allowed accurately calculating the strength of the magnetic interactions. Therefore, this neutron scattering study gives an important impact for the understanding of skyrmion physics. Possibly furthermore, this understanding will finally help to develop alternative magnetic systems for data storage.

 

Original publication:

P. Y. Portnichenko, J. Romhányi, Y. A. Onykiienko, A. Henschel, M. Schmidt, A. S. Cameron, M. A. Surmach, J. A. Lim, J. T. Park, A. Schneidewind, D. L. Abernathy, H. Rosner, Jeroen van den Brink, and D. S. Inosov; Magnon spectrum of the helimagnetic insulator Cu2OSeO3, Nature Communications 7, 10725 (2016)


◄ Back to: News article
To top
  • Privacy
  • Imprint
  • Accessibility